Probabilistic Seismic Design and Evaluation of Nuclear Facility Structures

Bozidar Stojadinovic, Associate Professor

Department of Civil and Environmental Engineering University of California, Berkeley

Pacific Earthquake Engineering Research Center

Performance-Based Design

Probabilistic Approach

of uncertainty

Goals and Benefits

- Improve prescriptive code requirements
 - Beneficial all building types and all stakeholders
- Characterize the potential consequences of building response to earthquakes by estimating:
 - Direct economic loss: repair and replacement costs
 - Indirect economic loss: business interruption
 - Casualties: deaths and injuries
- Enable design for:
 - Better performance of critical facilities
 - Greater confidence in better performance through using new structural protection concepts, such as base isolation
 - Equivalent performance (wrt. code) but at lower cost and with higher confidence

Common Probabilistic Basis for Evaluation of Structures

Given a seismic hazard environment and a structure, the probability that a performance objective is achieved is:

$$P_{PO} = \int_{hazard} P(PO \mid hazard) d(hazard)$$

- Must consider probability distributions of seismic hazard, of demand and of capacity due to:
 - Lack of knowledge (epistemic uncertainty)
 - Record-to-record randomness (aleatory uncertainty)

Seismic Hazard

- Use a ground motion intensity measures (PGA, Sa(T1), etc.)
- Probability of exceeding a value of ground motion intensity (hazard curve):

$$P_H = H(s_a^{P_H}) = k_0(s_a^{P_H})^{-k}$$

An earthquake does not know if the structure is conventional or nuclear: seismic hazard is the same

Probability of Failure

A comparison demand and capacity:

$$P_F = P(C \le D) = \int_{s_a} P(F | s_a) |dH(s_a)|$$

- Key assumptions about hazard, demand and capacity probability distributions:
 - Log-normal
 - lacktriangle Dispersion eta about the median

DOE-1020 and ASCE 43-05: Acceptance Criteria

- Probability of failure is smaller than probability of hazard
- Risk reduction ratio at the structure level

$$R_R = \frac{P_H}{P_F}$$

Performance Category	Risk Reduction Ratio	
PC-1 (conventional)	R _R =1.0	
PC-2 (internal exposure risk)	R _R =1.0	
PC-3 (labs, fuel cycle facilities)	R _R =10.0	
PC-4 (experimental reactors)	R _R =20.0	

Conventional Design: Acceptance Criteria

- Probability of failure is, implicitly, assumed equal to the probability of hazard
- Design equation:
 - Capacity reduction
 - Demand amplification

at the structural element level

$$P_F = P_H$$

$$\phi C > \sum \gamma D$$

Two Formats: Unified

		<u> </u>			
Probability of Hazard	$P_H = k_1 \left(S_a^{P_H} \right)^k$				
IM Based Probability of Failure	$P_F = k_1 \left(\eta_{S_a,C} ight)^{-k} e^{rac{1}{2}(keta_C)^2}$				
PSDM Based Probability of Failure	$P_F = H_{S_a}(S_a^{\eta_c}) e^{\frac{1}{2} \frac{k^2}{b^2} \beta_{D S_a}^2} e^{\frac{1}{2} \frac{k^2}{b^2} \beta_c^2}$				
	Hazard Format	DFCD Format			
Design/Assessment Equation	$R_{R} = \frac{P_{H}}{P_{F}}$	$\varphi \cdot \mathbf{C} \ge \gamma \cdot \mathbf{D}$			
IM Based Assessment	$R_{R} = \left(rac{P_{o} S_{a}}{\eta_{S_{a,C}}} ight)^{-k} e^{-rac{1}{2}(k eta_{S_{a},C})^{2}}$	$\underbrace{\frac{P_o S_a}{P_o S_a}}_{Demand(D)} = R_R^{-1/k} \underbrace{\eta_{S_a,C} e^{-\frac{1}{2}k \beta_{S_a,C}^2}}_{Capacity(\varphi C)}$			
PSDM Based Assessment	$R_{R} = \left(\frac{\frac{P_{o}}{S_{a}}}{S_{a}^{\eta_{C}}}\right)^{-k} e^{\frac{-1 k^{2}}{2 b^{2}} \left(\beta_{D S_{a}}^{2} + \beta_{C}^{2}\right)}$	$\underbrace{\eta_{D _{o_{S_a}}}^{p_{o_{S_a}}} e^{\frac{1}{2} \frac{k}{b} (\beta_{D S_a})^2}}_{Demand (\gamma D)} = R_R^{-b/k} \underbrace{\eta_C e^{-\frac{1}{2} \frac{k}{b} (\beta_C)^2}}_{Capacity (\varphi C)}$			

Risk-Informed Design and Evaluation Framework

Hazard vs. Failure

Conventional Structures

$$P_H = P_F$$

Nuclear Facility Structures

$$|P_H>P_F$$

$$\frac{\phi C}{\frac{b}{R_R^{k}}} > \sum \gamma D$$

Design Equation

Simulation Needs

- Reduce epistemic uncertainty by improving our knowledge of how structures respond to earthquakes
- Reduce aleatory uncertainty by:
 - Improving estimates of seismic hazard
 - Measuring randomness in demand and capacity
- Formulate risk-informed evaluation framework:
 - Determine acceptable levels of risk reduction for performance levels relevant to nuclear facility structures

A CAMUS Shear Wall Example

- TNO DIANA 8.1
- 2-D shell-element model
- Included:
 - Shaking table model
 - Restraint provided by floor slabs
 - Embedded reinforcement
 - Interface elements to model construction joints

FEMA-356: Deterministic Acceptance Criteria

θ [rad]	demand	10	LS	СР
Run 1	0.0014	0.002	0.004	0.008
Run 2	0.0005	0.002	0.004	0.008
Run 3	0.0021	0.002	0.004	0.008
Run 4	0.0017	0.002	0.004	0.008
Run 5	0.0045	0.002	0.004	0.008

Run 5: IO and LS limit states not satisfied (IO – immediate occupancy) (LS – life safety)

Probabilistic Demand Analysis

- A suite of representative ground motions
- Incremental Dynamic Analysis method
- Obtain median demand and dispersion

Probabilistic Capacity Analysis

- Done using:
 - Numerical models of the wall
 - Analysis of experimental data from tests on similar walls
- Provides a good estimate of the median capacity and dispersion

Risk-Informed Approach

- Computing risk reduction afforded by the CAMUS wall is now possible
 - This value is about 5 for the considered (Western Europe) seismic risk environment and the structural collapse limit state
- Finding: the wall is not adequate for PC-3 and PC-4
 - We know by how much
 - We know where reducing uncertainty will be most effective

Conclusion

- Modern structural design is based on a probabilistic consideration of failure:
 - Nuclear facility design provisions are formulated on the structure level
 - Conventional structures design provisions are formulated on the element level
- It is possible to formulate a unified, riskinformed design approach
- The unified approach enables using advances in earthquake engineering of conventional structures for seismic design and evaluation of nuclear facility structures

Thank you!

This project is funded by IRSN, France through a contract with the University of California, Berkeley